COURSE UNIT DESCRIPTION - FUNDAMENTALS OF GENETICS

Course unit (module) title	Code
FUNDAMENTALS OF GENETICS	

Lecturer(s)	Department(s)
Coordinator: Prof., habil. dr. Juozas LAZUTKA	Vilnius University, Department of Botany and Genetics, M.K.Čiurlionio g. 21/27, LT-03101 Vilnius
Other(s) . Assoc Prof Eglé Čésniené	

Cycle	Level of the course unit	Type of the course unit
Full-time studies (1 st stage)	1 out of 1	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Lectures, laboratory works, exercise	4 th semester, spring	Lithuanian (English)

Requirements for students					
Prerequisites: Additional requirements (if any):					
Biochemistry					

Number of credits allocated to the course unit	Student's total workload	Contact he	ours	Self-study and research hours
9	232	Lectures	64	120
		Exercises	12	
		Laboratory	36	
		works		

Purpose of the course unit:	programme competences to be developed	

Upon the successful completion of this course, students will acquire:

Subject-specific competences:

- basic knowledge of genetic principles underlying life;
- skills to perform experiments in genetics and interpret the data obtained;
- skills to perform reliable measurements, document and analyse the results of the measurements..

General competences:

• skills for self-development, learning skills in order to study general science resources.

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
 Upon the successful completion of this course, students will: Explain the Mendelian and non-Mendelian modes of inheritance that govern passage of genetic traits across generation; the basic structure and function of DNA and chromosomes as well as how chromosomes move through mitosis and meiosis; the basics of the molecular processes of DNA replication, transcription and translation as well as the important characteristics of the genetic code and gene regulation; the basics of molecular processes of mutation and repair; basic principles of making genetically modified organism; how a genetic sequence is determined and how it helps to understand genetic relationships between species Apply this knowledge of inheritance to track alleles through generations and categorize and predict 	Problem-based teaching, laboratory works, practice and self-study	Three written assessments during the term; three written assessments after the laboratory work; written exam

genotypes and phenotypes; draw and name all the	
relevant machinery for DNA replication, transcription,	
and translation; identify the parts of a gene, transcribe it,	
and then translate it into protein; describe the steps in	
making a genetically modified organism and be able to	
predict the outcome of making a mistake in the process;	
describe the process of genetic sequencing	

	Contact hours							Self-study work: time and assignments			
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments		
1. Patterns of inheritance	20						20	30	Analyses of appropriate chapters of the textbook. Studying lecture materials and other sources of information.		
Mendelian inheritance	6						6	6	The same		
Reproduction and chromosome transmission	2						2	6	The same		
Extension of Mendelian inheritance	2						2	3	The same		
Non-Mendelian inheritance	2						2	3	The same		
Genetic linkage and mapping	4						4	6	The same		
Variation in chromosome structure and number	4						4	6	The same		
2. Molecular structure and replication of genetic material	6						6	10	Analyses of appropriate chapters of the textbook. Studying lecture materials and other sources of information.		
Molecular structure of DNA and RNA	2						2	3	The same		
Chromosome organisation and molecular structure	2						2	3	The same		
DNA replication	2						2	4	The same		
3. Molecular properties of genes	20						20	30	Analyses of appropriate chapters of the textbook. Studying lecture materials and other sources of information.		
Gene transcription and RNA modification	2						2	3	The same		
Translation of mRNA	2						2	3	The same		
Gene regulation in bacteria and bacteriophages	4						4	6	The same		
Gene regulation in eukaryotes	4						4	6	The same		
Gene mutations and repair	4						4	6	The same		
Recombination and transposition	4						4	6	The same		
4. Genetic technologies	8						8	10	Analyses of appropriate chapters of the textbook. Studying lecture materials and other sources of information.		
Recombinant DNA technology	4						4	5	The same		
Structural and functional genomics	4						4	5	The same		

5. Genetic analyses of individuals and populations	10						10	16	Analyses of appropriate chapters of the textbook. Studying lecture materials and other sources of information.
Human genetic diseases and cancer	2						2	3	The same
Population genetics	2						2	3	The same
Conservation genetics	2						2	3	The same
Evolutionary genetics and genomics	2						2	3	The same
Human genome	2						2	4	The same
]	Labo	rator	y wor	·ks ar	nd ex	ercises	5	
Analysis of sex chromatin					4		4	1	Self study of the topic-related textbook material
Analysis of chromosome damage in <i>Allium</i> cells					4		4	1	The same
Chromosome analysis in plant meiosis					4		4	1	The same
Analysis of human karyotype					3		3	2	The same
Analysis of DNA damage in human cells					3		3	1	The same
Morphology of Drosophila melanogaster					2		2	1	The same
Monohybrid crosses					8		8	4	The same
Dihybrid and plyhybrid crosses					8		8	4	The same
Solving of genetical problems				12			12	9	The same
Total	64			12	36		112	120	

Assessment strategy	Weight,%	Assessment period	Assessment criteria
Written assessment of theoretical course I	10	After completion of first and second topic of the course	10 open questions. Completely correct answer – 2 points, incomplete answer – 1 point, incorrect answer – 0 points
Written assessment of theoretical course II	10	After completion of third topic of the course	10 open questions. Completely correct answer – 2 points, incomplete answer – 1 point, incorrect answer – 0 points
Written assessment of theoretical course III	10	After completion of fourth and fith topic of the course	10 open questions. Completely correct answer – 2 points, incomplete answer – 1 point, incorrect answer – 0 points
Written assessment of practical course I	10	After first, second and third laboratory work	10 open questions. Completely correct answer – 2 points, incomplete answer – 1 point, incorrect answer – 0 points
Written assessment of practical course II	10	After fourth and fith laboratory work	10 open questions. Completely correct answer – 2 points, incomplete answer – 1 point, incorrect answer – 0 points
Written assessment of practical course III	10	After completion of all laboratory works and exercises	10 open questions. Completely correct answer – 2 points, incomplete answer – 1 point, incorrect answer – 0 points
Final exam	40	After the course	20 open questions and problem solving tasks. Completely correct answer – 2 points, incomplete answer – 1 point, incorrect answer – 0 points
Total	100		Final mark is based on cummulative score. <50 % of posible points – failed (insufficient) 50-55 % – 5 (weak) 56-60 % – 6 (satisfactory) 61-70 % – 7 (average) 71-80 % – 8 (good) 81-90 % – 9 (very good) >90 % – 10 (excellent)

Author	Year of publica-	Title	Issue of a periodical	Publishing place and house or web link
--------	---------------------	-------	-----------------------	--

	tion		or volume of a publication				
Compulsory reading							
R.J. Brooker	2011	Genetics: Analysis and		McGraw-Hill Higher			
		Principles, 4 th edn.		Education			
Paulauskas A., Slapšytė G.,	2003	Methods and exercises in					
Morkūnas V.		general Genetics (in					
		Lithuanian)					
Optional reading							
D. Hyde	2009	Introduction to Genetic		McGraw-Hill Higher			
		Principles		Education.			