COURSE UNIT DESCRIPTION - GENETIC ENGINEERING

Course unit title	Code		
GENETIC ENGINEERING			
Lecturer(s)	Departm	ient(s)	
Coordinator: Assoc. prof. Gintautas ŽVIRBLIS	Institute of Biotechnology of Vilnius University,		
Other(s): Dr. Julija Armalytė	V.A.Graičiūno 8, Vilnius LT-02. Department of Biochemistry and University, M.K. Čiurlionio 21/2	Molecular Biology, Vilnius	

Cycle	Level of the course unit	Type of the course unit
Full-time studies (1 st stage)	1 out of 1	Compulsory

Mode of delivery	Period of delivered	Language(s) of instruction
Face to face	5 th semester, autumn	Lithuanian

Prerequisites and corequisities					
Prerequisites:	Corequisities (if any):				
Biochemistry, organic chemistry, genetics, molecular					
biology (part I).					

Number of credits allocated to the course unit	Student's total workload	Contact hours	Self-study and research hours
5	133	64	69

6 41

Purpose of the course unit: programme competences to be developed					
Upon the successful completion of this cours	e, students will acquire:				
Subject-specific competences:					
		g, selection, targeted DNA mutagenesis and			
recombination, control of gene expres	ssion.				
 the basic knowledge on gene manipul 	ations, methods of genetic engin	neering and its application;			
 skills to plan the gene constructing ex 	xperiments, as well as analyze a	nd evaluate the data on genetic information.			
General competences:					
 skills for self-development, study skil 	ls in order to study molecular b	iology;			
• skills to present in written and verba	l forms the knowledge and con-	cepts of genetic engineering;			
• skills to participate in the scientific	discussion;				
Learning outcomes of the course unit	Teaching and learning	Assessment methods			
	methods	Assessment methods			
• Describes basic aspects of prokaryotic					
and eukaryotic gene structure and					
genetic information transfer applied for					
genetic engineering, as well as the					
methods of gene selection,					
mutagenesis, recombination and	Lectures, seminars, self-	Colloquium			
control of gene expression used for	directed learning	cono qui un			
genetic manipulations.					
• Plans, analyses, compares and critically					
evaluates the gene construction					
experiments and the information					
related to this topic.					
• Explains and applies methods of DNA	Lectures, seminars, self-	~ · · ·			
and gene cloning and possibilities of	directed learning Colloquium				
gene transfer to different species using	6				

 genetic vectors; Analyses, compares and critically evaluates the genetic information related to this topic. Describes gene expression and regulation principles; Explains strategies to construct recombinant DNA molecules and organisms with controlled expression; 	Lectures, seminars, self- directed learning	Colloquium
• Analyses, compares and critically evaluates the structure of recombinant DNA vectors related to this topic.		
 Describes the methods of construction of recombinant proteins and their structural possibilities, using genetic vectors and enzymes. Analyses, compares and critically evaluates the features of recombinant proteins related to this topic. 	Lectures, seminars, self- directed learning	Exam
 Describes principles of GMO construction, features, application possibilities and safety requirements; Analyses, compares and critically evaluates the GMO features related to this topic. 	Lectures, seminars, self- directed learning	Exam
 Explains methods of genome sequencing and application of obtained genetic information; Analyses, compares and critically evaluates the features of sequenced genomes related to this topic. 	Lectures, seminars, self- directed learning	Exam

	Contact hours							Self-study work: time and assignments	
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments
1. Genetic vectors	5		6				11	10	Self-directed learning of the topic-related textbook material, analysis of the topic-related scientific papers.
Prokaryotic genetic vectors	2						2	3	
Eukaryotic genetic vectors	1						1	3	
Application of genetic vectors	2						2	4	
2. Gene cloning	6		7				13	14	Self-directed learning of the topic-related textbook material, analysis of the topic-related

					scientific papers.
Gene cloning enzymes	2		2	4	
Gene libraries and gene selection methods	2		2	4	
Current methods of gene cloning and their	2		2	6	
application	_		-	Ũ	
3. Gene expression	6	6	12	14	Self-directed learning of the topic-related textbook material, analysis of the topic-related scientific papers
Structure of gene expression vectors	2		2	5	
Gene expression systems in prokaryotes	2		2	5	
Gene expression systems in eukaryotes	2		2	4	
4. Construction of recombinant proteins	6	7	13	12	Self-directed learning of the topic-related textbook material, analysis of the topic-related scientific papers.
Construction of prokaryotic proteins	2		2	3	
Construction of eukaryotic proteins	2		2	3	
Purification of recombinant proteins, tag sequences,	2		2	6	
fused proteins.					
5. Genetically modified organisms	4	2	8	10	Self-directed learning of the topic-related textbook material, analysis of the topic-related scientific papers.
GMM prokaryotes and yeast, and their application	1		1	3	
GMO plants and animals and their application	2		2	4	
GMO contained use and safety measures	1		1	3	
6. Sequencing of genomes	5	4	9	9	Self-directed learning of the topic-related textbook material, analysis of the topic-related scientific papers.
Current Technologies for Genome Sequencing	2		2	4	
Human genome project	1		1	2	
Application of DNA sequencing methods and genomic data	2		2	3	
Total	32	32	64	69	

Assessment strategy	Weight,%	Assessment period	Assessment criteria
Colloquium	50	9 th week of the	Test of 50 questions from topics 1-3.
		course	<24 answered questions - 2-4 (insufficient)
			24 answered questions - 5 (sufficient)
			25-29 answered questions -6 (satisfactory)
			30-34 answered questions - 7(highly satisfactory)
			35-39 answered questions -8 (good)
			40-44 answered questions -9 (very good)

			45-50 answered questions10 (excellent)
Exam	50	16 th week of	Test (virtual learning environment) of 50 questions from topics 4-6
		the course	<24 answered questions - 2-4 (insufficient)
			24 answered questions - 5 (sufficient)
		The final	25-29 answered questions -6 (satisfactory)
		exam is	30-34 answered questions - 7(highly satisfactory)
		allowed only	35-39 answered questions -8 (good)
		when 75% of	40-44 answered questions -9 (very good)
		seminars are	45-50 answered questions -10 (excellent)
		attended.	
Total	100		Mean of the scores of colloquium and exam.

Author	Year of publica- tion	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
Ed. by Krebs JE,	2011	Lewin's genes X.	U-angl. / 575	Jones and Bartlett
Goldstein ES and			/ Kr-82	Publishers
Kilpatrick ST			(VU Library)	
Optional reading				
William Wu, Michael	2004	Gene Biotechnology	ISBN 08493-	CRS Press
J.Welsh, Peter B.			1288-4	
Kaufman, Helen H. Zhang				