COURSE UNIT DESCRIPTION - LINEAR ALGEBRA AND GEOMETRY

Course unit title	Code
LINEAR ALGEBRA AND GEOMETRY	

Lecturer(s)	Department(s)
Coordinator: Assoc. prof. dr. Aleksas DOMARKAS	Vilnius University, faculty of Mathematics and Informatics, Naugarduko g. 24, LT-03225, Vilnius

Cycle	Level of the course unit	Type of the course unit
Full-time studies (1 $1^{\text {st }}$ stage)	1 out of 1	Compulsory

Mode of delivery	Period of delivered	Language(s) of instruction
Face to face	$1^{\text {st }}$ semester, autumn	Lithuanian

Prerequisites and corequisities	
Prerequisites:	Corequisities (if any):
School level course of Mathematics; Linear Algebra	None

Number of credits allocated to the course unit	Student's total workload	Contact hours	Self-study and research hours
5	134	64	70

Purpose of the course unit: programme competences to be developed

The course unit aims to develop:
Subject specific competences:

- Competence to analyse data on the basis of numerical analysis skills;

General competences:

- skills for self-development, learning skills in order to study both molecular biology and general science resources.

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
Upon the successful completion of this course, students will: - explain the concepts, methods and structure of linear algebra and analytic geometry ; - formulate (verbally or in text) ideas, propositions and proofs of linear algebra and analytic geometry using the appropriate language; - solve mathematical problems using techniques from of linear algebra and analytic geometry; - explain the basic information technology systems and methods applicable to solving linear algebra and geometry tasks. - acquire advanced logical reasoning, integrated problem-solving and proof writing skills; - be able to apply methods of calculus to analyse biological data.	Lecture, Practice classes, Individual reading	Tests (written) Exam (written)

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Assessment strategy	Weight,\%	Assessment period	Assessment criteria
Tests (written)	$20+20$	$8^{\text {th }}$ and $15^{\text {th }}$ weeks of the course	Each test consists of 5-10 problems.

			$\begin{aligned} & 10 \text { (excellent) }-\geq 92 \% \\ & 9 \text { (very good) }-82-91 \% \\ & 8 \text { (good) }-74-81 \% \\ & 7 \text { (highly satisfactory) }-66-73 \% \\ & 6 \text { (satisfactory) }-58-65 \% \\ & 5 \text { (sufficient) }-50-57 \% \\ & \text { Faill: } \\ & 4 \text { (insufficient) } 40-49 \% \\ & 3-30-39 \% \\ & 2-20-29 \% \\ & 1-\leq 19 \% \end{aligned}$
Exam (written)	60	January	Final exam consists of 2 theory questions and 3-5 problems. Pass: 10 (excellent) - $\geq 92 \%$ 9 (very good) - $82-91 \%$ 8 (good) - $74-81 \%$ 7 (highly satisfactory) - 66-73\% 6 (satisfactory) - 58-65\% 5 (sufficient) - $50-57 \%$ Faill: 4 (insufficient) 40-49\% 3-30-39\% 2-20-29\% $1-\leq 19 \%$
Total	100		Accumulative score

Author	Year of publication	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
Pekarskas V.	2005	Short Course in Mathematics (in Lithuanian)		Technologija
Rumšas P.	1976	Short Course in Mathematics (in Lithuanian)		Mintis
Kubilienė M, Stankevičienė V.	2005	Linear and Vectorial Algebra (Problems)(in Lithuanian).		Technika
Optional reading				
Pekarskas V., Pekarskienė A.	2004	Elements of Linear Algebra and Aanalytical Geometry (in Lithuanian)		Technologija
Pridotkas G., Švitra D.	1997	Practice in Mathematics (in Lithuanian)	1 d.	TEV
Matuliauskas A.	1985	Algebra (in Lithuanian)		Mintis
Pincevičius A., Domarkas A., Pakenienė V.	2007	Applied Works of Mathematics (in Lithuanian)		LKA
Beezer R.	2009	A First Course in Linear Algebra		http://linear.ups.edu/
Matthews K,	1991	Elementary Linear Algebra		http://www.numbertheory.or g/book/

