COURSE UNIT DESCRIPTION - LINEAR ALGEBRA AND GEOMETRY

		Code						
LINEAR ALGEBRA AND GEOMETRY								
Lectur	er(s)			Department(s)				
Coordinator: Assoc. prof. dr. Aleksas DOMARKAS				culty of Ma	athematics and Informatics,			
			Naugarduko g. 24, LT-	03225, Viln	ius			
Cycle		Level of	the course unit	Тл	pe of the course unit			
Full-time studies (1 st stage)				Compulsory				
					,			
Mode of delivery			of delivered	Language(s) of instruction				
Face to face		1 st semester, autu	ımn	Lithuanian				
		Dronoquicitor	and concentration					
Prerequisites:		Prerequisites	and corequisities Corequisities (if any	v)•				
School level course of Mather	natics; Linea	ar Algebra	None	y).				
Number of credits					Solf study or I wassaul			
allocated to the course unit	Student's	s total workload	Contact hour	rs	Self-study and research hours			
5		134	64		70			
		ourse unit: prog	gramme competences to) be develop	ped			
The course unit aims to develo Subject specific competences:	-							
 Competence to analyse da 		sis of numerical	analysis skills.					
General competences:	au on the out	sis of numerical	anarysis skins,					
• skills for self-developmen	t. learning sl	kills in order to s	tudy both molecular biol	ogv and ger	neral science resources.			
Learning outcomes			Teaching and le methods	Assessment methods				
Upon the successful completion will:	on of this co	urse, students	methous					
• explain the concepts, met	hods and str	ucture of linear						
algebra and analytic geom			Lecture,		Tests (written)			
• formulate (verbally or in te				Practice classes, Exa				
proofs of linear algebra an	d analytic g	eometry using	Individual read	ing				
the appropriate language;		1						
• solve mathematical proble		chniques from of						
 linear algebra and analytic geometry; explain the basic information technology systems and 								
methods applicable to solving linear algebra								
and geometry tasks.	-	-						
• acquire advanced logical r	0	0						
problem-solving and proof								
• be able to apply methods of biological data.	o analyse							
Contact breakdown of the tenice Contact hours Self-study work: time and								
Content: breakdown of the topics Con			ontact hours		assignments			

	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work placement	Contact hours	Self-study hours	Assignments	
1. Matrices, operations with matrices. The determinant of a matrix. Properties of determinants. Inverse matrix. The rank of a matrix.	4		_	4			4	4		
2. Systems of linear equations. Cramer's rule. The Gauss method. Kronecker-Capelli theorem. Homogeneous Systems of Linear Equations. Examples.	6			6			12	12		
3. Vector spaces. Linear operations with vectors. Linearly dependent and independent vectors. The dimension and basic of vector spaces.	2			2			4	4		
4. Inner product, the angle between vectors. Euclidean vector spaces. Cross product of two vectors and its properties.	2			2			4	4	Individual reading,	
5. Eigenvalues and eigenvectors. Orthogonal matrices. Quadratic forms. Reduction to canonical form.	2			2			6	6	Problem solving	
6. The complex numbers. The arithmetic operations with complex numbers. Polar form of a complex number. Powers and roots.	2			2			4	4		
7. Equations of a line in the plane. The angle between two lines. The distance between a point and a line.	2			2			8	8		
8. Various equation forms of a plane in the space. Equations of a line in the space. The distance between a point and a plane.	2			2			4	4		
9. Second-order curves. Circle. Ellipse. Hyperbola. Parabola.	4			4			6	6		
10. Transformation formulas of Cartesian coordinates. Plane transformations – rotation, homothety, reflection, translation. Transformation general equation of second degree to canonical form.	2			2			4	4		
11. Polar and parametric equations of a curves in the plane. Examples.	2			2	Ī		4	4		
12. Surfaces of the second order. Ellipsoid, hiperboloid, paraboloid, cone. Rotation and cylindric surfaces.	2			2			4	4		
Exam.							_	6	Preparation for the exam	
Total	32			32			64	70		

Assessment strategy	Weight,%	Assessment period	Assessment criteria	
Tests (written)	20+20	8 th and 15 th	Each test consists of 5-10 problems.	
		weeks of the		
		course	Pass:	

Exam (written)	60	January	10 (excellent) - ≥92% 9 (very good) - 82 - 91% 8 (good) - 74 - 81% 7 (highly satisfactory) - 66 - 73% 6 (satisfactory) - 58 - 65% 5 (sufficient) - 50 - 57% Faill: 4 (insufficient) 40 - 49% 3 - 30 - 39% 2 - 20 - 29% 1 - ≤ 19% Final exam consists of 2 theory questions and 3-5 problems. Pass: 10 (excellent) - ≥92% 9 (very good) - 82 - 91% 8 (good) - 74 - 81% 7 (highly satisfactory) - 66 - 73% 6 (satisfactory) - 58 - 65% 5 (sufficient) - 50 - 57% Faill: 4 (insufficient) 40 - 49% 3 - 30 - 39% 2 - 20 - 29% 1 - ≤ 19%
Total	100		Accumulative score

Author	Year of publica- tion	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
Pekarskas V.	2005	Short Course in Mathematics (in Lithuanian)		Technologija
Rumšas P.	1976	Short Course in Mathematics (in Lithuanian)		Mintis
Kubilienė M, Stankevičienė V.	2005	Linear and Vectorial Algebra (Problems)(in Lithuanian).		Technika
Optional reading				
Pekarskas V., Pekarskienė A.	2004	Elements of Linear Algebra and Aanalytical Geometry (in Lithuanian)		Technologija
Pridotkas G., Švitra D.	1997	Practice in Mathematics (in Lithuanian)	1 d.	TEV
Matuliauskas A.	1985	Algebra (in Lithuanian)		Mintis
Pincevičius A., Domarkas A., Pakenienė V.	2007	Applied Works of Mathematics (in Lithuanian)		LKA
Beezer R.	2009	A First Course in Linear Algebra		http://linear.ups.edu/
Matthews K,	1991	Elementary Linear Algebra		http://www.numbertheory.or g/book/