COURSE UNIT DESCRIPTION - MOLECULAR BIOLOGY I

Course unit title	Code
MOLECULAR BIOLOGY I	

Lecturer(s)	Department(s)
Coordinator: Prof. Edita SUŽIEDĖLIENĖ	Vilnius University, Department of Biochemistry and
	Molecular Biology, M.K.Čiurlionio g. 21/27, LT-03101
Other(s):	Vilnius
Dr. Julija Armalytė	
Lect. dr. Violeta Jonušienė	
Dr. Danutė Labeikytė	
Lect. dr. Aušra Sasnauskienė	

Cycle	Level of the course unit	Type of the course unit
Full-time studies (1 st stage)	1 out of 2	Compulsory

Mode of delivery	Period of delivered	Language(s) of instruction
Face to face	4 th semester, spring	Lithuanian (English)

Prerequisites and corequisities							
Prerequisites: Corequisities (if any):							
Biochemistry, organic chemistry							

Number of credits allocated to the course unit	Student's total workload	Conta	ect hours	Self-study and research hours
5	150	Lectures	32	70
		Seminars	16	
		Laboratory	32	
		works		

Purpose of the course unit: programme competences to be developed

Upon the successful completion of this course, students will acquire:

Subject-specific competences:

- the modern life sciences research-based knowledge of the fundamental molecular processes of the storage, multiplication, transfer and realization of biological information in the prokaryotic and eukaryotic cell;
- the knowledge of the structure and functions of essential biological macromolecules;
- skills to analytically, critically and systemically analyze and evaluate information in molecular biology and related scientific fields;
- skills to carry out basic molecular biology laboratory procedures, work with standard molecular biology and biomedical equipment; perform reliable measurements, document and analyse the results of the measurements;
- skills to select appropriate molecular biology methods for the investigation of biological molecules; perform experiments, interpret the data obtained and draw science-based conclusions.

General competences:

- skills for self-development, skills to study molecular biology and general science resourses;
- skills to present in written and verbal forms the knowledge and concepts of molecular biology;
- skills to participate in the scientific discussion;
- skills to organize and plan work and time.

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
• Describes principles of DNA, RNA, protein molecular structure and their functional role in	Lectures, seminars laboratory work; self-study.	Midterm exam; defence of Lab

 cellular processes; Analyses, compares and critically evaluates the molecular biology information related to DNA, 		Report; written analysis of scientific paper.
 RNA protein molecular structure and functions; Selects and applies methods of DNA isolation and analysis; performs experiments, interprets the data, presents research-based conclusions; 		
 Describes principles of molecular chromatin structure and its dynamics; Analyses, compares and critically evaluates the molecular biology information related to chromatin molecular structure and functions; 	Lectures, seminars; self- study.	Midterm exam; written analysis of scientific paper.
 Describes principles of DNA biosynthesis in prokaryotes and eukaryotes and its regulation, the structure, function and differences of replication machineries; Analyses, compares and critically evaluates the molecular biology information related to DNA biosynthesis; 	Lectures, seminars; laboratory work; self-study.	Final exam; defence of Lab Report; written analysis of scientific paper.
 Selects and applies PCR method and its modifications for DNA analysis; performs experiments, interprets the data, presents research- based conclusions. 		
 Describes molecular principles of RNA biosynthesis in prokaryotes and eukaryotes and molecular structure of transcription machineries; Describes principles of transcription regulation in prokaryotes and eukaryotes, basic features of <i>trans</i>- and <i>cis</i>-acting transcriptional regulators; Analyses, compares and critically evaluates the molecular biology information related to RNA biosynthesis and its regulation; Selects and applies methods for RNA isolation and analysis; performs experiments, interprets the data, presents research-based conclusions. 	Lectures, seminars; laboratory work; self-study.	Final exam; defence of Lab Report; written analysis of scientific paper.

	Contact hours							Self-study work: time and assignments		
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments	
1. DNA, RNA and Protein Structure	9		5				14	12	Self-directed learning of the topic- related textbook material (course	
Structure									virtual learning environment);	
									Reading of the topic-related	
									scientific papers and preparation for	
									written analysis 1 of scientific	
	-		1				•	0	paper.	
DNA molecular structure. DNA	2		1				3	3	The same	
primary structure. DNA secondary structure. DNA A, B, Z and other										
family helixes. Unusual DNA										
secondary structures.										
DNA supercoiling. Topoisomerases.	2		1				3	3	The same	
DNA tertiary structure. Circular										
DNA and supercoiling. Structure										

and functions of topoisomerases.									
RNA molecular structure. tRNA	3		2				5	3	The same
secondary and tertiary structure.	5		2				5	3	I HE SAILE
rRNA secondary and tertiary									
structure. Ribozymes. Riboswitches.									
Small cellular RNAs.									
Protein molecular structure. Protein	2		1				3	3	The same
	2		1				3	3	The same
primary, secondary, tertiary and									
quaternary structures. Protein									
folding and missfolding.	-		2				0	10	
2. Chromatin Molecular Structure	5		3				8	10	Self-directed learning of the topic- related textbook material (course virtual learning environment),
									Reading of the topic-related scientific papers and preparation for written analysis 2 of scientific
									paper.
Molecular structure of the	1	ΙĪ	1				2	2	The same
nucleosome.									
Nucleosome core. Histones: structure									
and features. Histone modifications									
and their biological role. Histone									
code.	L			<u> </u>					
Chromatin higher level molecular	2		1				3	4	The same
structures.10 nm and 30 nm									
chromatin fibres.									
Chromatin, replication and	2		1				3	4	The same
transcription. Chromatin and									
replication. Chromatin and									
transcription and its regulation.									
Histone modifications and									
transcription regulation. Chromatin									
remodelling protein complexes and									
transcription regulation. DNA									
organisation in prokaryotes.									
Bacterial nucleoid.									
3. DNA Biosynthesis	9		4				13	12	Self-directed learning of the topic-
									related textbook material (course
									virtual learning environment),
									Reading of the topic-related
									scientific papers and preparation for
									written analysis 3 of scientific
									paper.
DNA Polymerases. Structure and	2		1				3	3	The same
mechanism of catalysis. Replication									
fidelity. Diversity of DNA									
polymerases.									
Replication in prokaryotes.	3		1				4	4	The same
Bacterial DNA Polymerases I-V.									
DNA polymerase III holoenzyme									
and functions of its subunits.									
Assembly of DNA pol III									
holoenzyme. Binding of sliding									
clamp and core DNA pol III to									
DNA. Structure of replication fork.									
Bacterial replicative primase.									
Bacterial replicative DNA helicase.									
SSB proteins. Initiation of									
replication in bacteria. Replisome									
	I	I			ı			l	

assembly at ori site. Replication							
elongation. Okazaki fragments,							
their synthesis and maturation of							
the lagging strand. DNA ligases.							
Replication termination. Bacterial							
replicons.							
Replication in eukaryotes. Structure	4		2		6	5	The same
and features of eukaryotic			2		U	5	
replication fork. DNA polymerase							
alpha/primase. Replication protein							
A. Sliding clamp. Clamp loader.							
DNA polymerases epsilon and							
delta. DNA polymerase beta. DNA							
polymerase gamma. Other DNA							
polymerases in eukaryotes. TLS							
DNA polymerases. Maturation of							
Okazaki fragments in eukaryotes.							
Nuclease FEN 1 and nuclease							
Dna2. Replicative DNA helicases							
in eukaryotes. Initiation of							
replication. DNA replication factory							
hypothesis. Other known							
replication mechanisms. Rolling							
circle DNA replication.							
Bacteriophage fiX174 DNA							
replication. Plasmid DNA replication							
by rolling circle mechanism. Tetha							
DNA replication. Replication by D							
loop. Linear DNA end replication							
problem. Replication of adenovirus							
DNA. Telomeres and their							
structure. Structure of shelterin							
complex. Telomere t-loops.							
Structure and functions of							
telomerase.							
4. RNA Biosynthesis	9		4		13	13	Self-directed learning of the topic-
	-		-				related textbook material (course
							virtual learning environment),
							Reading of the topic-related
							scientific papers and preparation for
							written analyses 4 and 5 of
	-						scientific papers.
RNA Polymerases. Structure and	2		1		3	4	The same
features of prokaryotic and							
eukaryotic RNA polymerases.							
Transcription in prokaryotes.	3		1		4	4	The same
Transcription cycle. Recognition of							
bacterial promoters. Sigma factors							
and their features. Bacterial							
promoters, their structure and							
features. Transcription elongation							
and termination in bacteria.							
Regulation of transcription in							
prokaryotes. Operon.							
	4		2		 6	5	The same
Transcription in eukaryotes.	4		2		0	5	
RNA polymerase I. Promoters of							
RNA pol I and assembly of the							
transcription complex. RNA							
polymerase III. Promoters of							

8. Accession of bacterial transcription by Northern analysis				3	The same
7. Purification of total bacterial RNA		14	14	3	The same
6. Modifications of PCR (multiplex PCR, nested PCR)				2	The same
 Optimisation of PCR and target identification 				2	The same
 Virtual analysis of target DNA sequences and primer design 		8	8	4	The same
3. DNA spectral and restriction analysis				2	The same
2. Isolation of plasmid DNA from bacterial cells				2	The same
from eukaryotic cells					related textbook material, preparation for laboratory work and preparation of Lab Report.
1. Isolation of chromosomal DNA		10	10	3	Self-directed learning of the topic-
Laboratory works		1		1	I
transcription factors. Gene regulation by RNA interference.					
recognition motives of					
Response elements. DNA					
Activation of transcription.					
transcription. Regulation of transcription in eukaryotes.					
structure and the role in					
transcription complex. Mediator, its					
RNA pol II and assembly of the					
transcription complex. RNA polymerase II. Promoters of					

Assessment strategy	Weight,%	Assessment period	Assessment criteria		
Midterm exam	30	9-10 th week of	Test (virtual learning environment) of 50 questions from		
		the course	the course topics 1-2.		
			<24 answered questions - 2-4 (insufficient)		
			24 answered questions - 5 (sufficient)		
			25-29 answered questions -6 (satisfactory)		
			30-34 answered questions - 7(highly satisfactory)		
			35-39 answered questions -8 (good)		
			40-44 answered questions -9 (very good)		
			45-50 answered questions -10 (excellent)		
Completion of	15	The final exam	2-4 (insufficient)		
laboratory works,		is allowed only	5 (sufficient)		
preparation and		when all	6 (satisfactory)		
defence of		laboratory works	7(highly satisfactory)		
laboratory work		are completed,	8 (good)		
reports.		practical work	9 (very good)		
_		reports prepared	10 (excellent)		
		and defended			
		until 16th week			
		of the course.			
Written analysis	15	The final exam is	2-4 (insufficient)		

of scientific papers		allowed only upon completion of scientific paper analyses 1- 5 until 16 th week of the course.	5 (sufficient) 6 (satisfactory) 7(highly satisfactory) 8 (good) 9 (very good) 10 (excellent)		
Class participation	-	During lectures and seminars.	Class participation will be awarded by the 0/1 points depending on the level of involvement during in-class activities, by the quantity and quality of contributions during seminars. The points, received during semester can be added to either midterm or exam test points.		
Final exam	40	Exam session	Test (virtual learning environment) of 50 questions from topics 3-4 <24 answered questions - 2-4 (insufficient) 24 answered questions - 5 (sufficient) 25-29 answered questions - 6 (satisfactory) 30-34 answered questions - 7(highly satisfactory) 35-39 answered questions - 8 (good) 40-44 answered questions - 9 (very good) 45-50 answered questions - 10 (excellent)		
Total	100		All course parts must be completed at least with the minimal evaluation (sufficient, 5) to obtain the finalgrade. The final grade is the sum of all evaluated parts.		

Author	Year of publica- tion	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link					
Compulsory reading									
Molecular biology	Since 2012	Course virtual learning environment (lectures, scientific papers, PDF materials of instructor textbook)		http://vma.esec.vu.lt					
Allison L.A.	2011	Fundamental Molecular Biology.		Blackwell Publishing					
Šeputienė V, Bagdonienė L, Labeikytė D, Sasnauskienė S.	2008	Molecular biology practical classes (in Lithuanian)		Technologija, Kaunas					
Optional reading									
Ed. by Krebs JE, Goldstein ES and Kilpatrick ST	2011	Lewin's genes X.		Jones and Bartlett Publishers					