COURSE UNIT DESCRIPTION - MOLECULAR EVOLUTION

Course unit title	Code		
MOLECULAR EVOLUTION			
Lecturer(s)	Departm	ent(s)	
Coordinator: Assoc. Prof. Jurga TURČINAVIČIENĖ	Faculty of Natural sciences,	Department of Zoology,	
	M.K.Čiurlionio g. 21/27, LT-03	101 Vilnius;	
Other(s): Dr. Remigijus Skirgaila	Thermo Fisher Scientific, Vilni	us Division, V. A. Graičiūno	
	Str. 8, LT-02241 Vilnius		

Cycle	Level of the course unit	Type of the course unit
Full-time studies (1 st stage)	1 out of 1	Compulsory

Mode of delivery Period of delivered		Language(s) of instruction
Face to face	7 th semester, autumn	Lithuanian

Prerequisites and corequisities				
Prerequisites: None	Corequisities (if any): None			

Number of credits allocated to the course unit	Student's total workload	Contact hours	Self-study and research hours
5	133	48	85

Purpose of the course unit: programme competences to be developed

Upon the successful completion of this course, students will acquire:

Subject-specific competences:

- the modern research-based knowledge of the principles of molecular evolution,
- knowledge of the research methods used in reserach of molecular evolution and their application;
- skills to analytically, critically and systemically analyze and evaluate information in the area of molecular evolution;
- skills to present in written and verbal forms the knowledge and concepts of molecular evolution; *General competences:*
 - skills for self-development, skills to study general science resourses;
 - skills to participate in the scientific discussion;

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
Explains and applies basic methods of molecular evolution.		
Explains molecular features of organisms and relates it with evolution of these organisms.	Problem-based teaching	
Discuss and compares data of molecular phylogeny and relates taxa according similarity of genomes, understands basic principles of phylogeny.	lecture, discussion in seminars, self-study.	Test (open questions), Seminar presentation
Explains principles of evolution of proteins and nucleic acids, describes practical application of knowledge in evolution of macromolecules.		

Content: breakdown of the topicsContact hoursSelf-study work: time and assignments	Content: breakdown of the topics
---	----------------------------------

	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
 Introduction. Genes and mutations. Dynamics of genes in populations. Nucleotide substitution in DNA. Neutral mutation hypothesis. 	2		2				4	6	Self-directed learning of scientific literature and lecture
 Evolutionary change in nucleotide sequences. Alignment of sequences and homology. Neutral theory and molecular data. Differences within and between species. 	2		2				4	6	material, preparation for discussion and seminar
 Nucleotide substitution in different regions. Rates of substitution in nuclear and organelle DNA. 	2		2				4	6	presentation.
4. Molecular clock. Local clocks.	2		1				3	6	
 Molecular data in phylogeny. Types of data. Methods of tree reconstruction. Parsimony and maximum likelihood methods. Phylogenetic approach. Divergence time. 	3		2				5	6	
6. Molecular methods in phylogeography and research of populations.	2		1				3	6	
 Molecular data and morphology. Homology and similarity. Gene trees and phylogeny of organisms. 	3		2				5	6	
8. Genome evolution. Comparative genomics.	8		2				10	7	
9. Protein evolution <i>in vitro</i>	8		2				10	8	
10. Exam.								28	Praparation for exam.
Total	32		16				48	85	

Assessment strategy	Weight, %	Assessment period	Assessment criteria
Quizzes during	10	During	Points for correct answers
lectures and		semester	2 points – correct answer
seminars			1 point – partly correct answer
			0 point - no correct or do not present
Presentation	20	During	2-4 (insufficient))
during seminars		semester	5 (sufficient)
			6 (satisfactory)
			7(highly satisfactory)
			8 (good)
			9 (very good)
			10 (excellent)
Exams	70	Mid and end	2 tests (open questions) of 50 questions. Every question – 1 point.
		of semester	50-60 answered questions -5 (sufficient)
			60-70 answered questions - 6 (satisfactory)
			70-80 answered questions -7(highly satisfactory)
			80-90 answered questions -8 (good)
			90-100 answered questions9 (very good) and10 (excellent)
Final assessment	100		The final assessment consists of the class participation, seminar
			presentation and examination score.

Author Year of publica-	Title	Issue of a periodical	Publishing place and house or web link
-------------------------	-------	-----------------------	---

	tion		or volume of a	
			publication	
Compulsory reading				
Scott O. Rogers.	2012	Integrated Molecular		Tailor&Francis Group
		Evolution		
Optional reading				
Claus Nielsen	2012	Animal Evolution:		
		Interrelationships of the		
		Living Phyla		
James Alan Shapiro	2011	Evolution: A View from		
		the 21st Century		