COURSE UNIT DESCRIPTION - STRUCTURAL CELL BIOLOGY

	Coue
STRUCTURAL CELL BIOLOGY	

Lecturer(s)	Department(s)
Coordinator: Assoc. Prof. dr. Juozas RAUGALAS	Department of Microbiology and Biotechnology Faculty of Natural Sciences, Čiurlionio 21, LT 03101, Vilnius

Cycle	Level of the course unit	Type of the course unit
Full-time studies (1 st stage)	1 out of 1	Compulsory
Full-time studies (1 th stage)		Compulsory

Mode of delivery	Period of delivered	Language(s) of instruction
Face to face	3th semester, autumn	Lithuanian

Prerequisites and corequisities					
Prerequisites:	Corequisities (if any):				
General and bioorganic chemistry	None				

Number of credits allocated to the course unit	Student's total workload	Contact hours	Self-study and research hours
5	133	64	69

Purpose of the course unit: programme competences to be developed

The course unit aims to develop:

Subject-specific competences:

- knowledge of the structure and functions of components of eukaryotic and prokaryotic cells, achievements of structural cell biology, and general methods of cell investigation;
- skills to perform reliable measurements, document and analyse the results of the measurements

General competences:

- analytical and critical thinking;
- skills for self-development, learning skills in order to study general science resources;
- ability to organize and plan their work and time

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
Upon completion of the course students will be able to:		Upon completion of the first part of the course (lectures 1-5)
• Explain prokaryotic and eukaryotic cell structure regularities and principles.	The course material is provided in the lectures and	accounted for the first intermediate written exam.
• Explain basic principles of the fluorescence and electron microscopy methods and their application possibilities.	laboratory works.	Upon completion of the second part of the course (lectures 6- 10) accounted for the second intermediate written exam.
• Use light microscopy and apply light microscopy methods to study cells and tissues.	Knowledge perpetuating	After the laboratory work reported for each job
• Use theoretical and practical knowledge in other disciplines (genetics, molecular biology, biochemistry) and apply them in experiments.	cytology laboratory sessions, where under the guidance of the teacher, students carry out specific practical tasks.	assessment from 0 to 5 points. For the remaining five classes accounted for the final written examination.

	After the laboratory works are finished students report for each work (task) separately. Final assessment is from 0 to 4 points.
--	--

				Cont	tact h	ours			Self-s	study work: time and
							assignments			
	Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments
1.	Introductions to cells. Chemical components of cells.	3						3	2	Analyses of needed lecture material. Studying of literature and other sources of information, learning through practical tasks during the laboratory works.
2.	Biological membranes. Plasma membrane. Passive and active membrane transport. Carrier proteins, channels, and pumps. Endocytosis and exocytosis. Glycocalyx. The cell walls of plant, fungi and bacteria cells.	3						3	2	Analyses of needed lecture material. Studying of literature and other sources of information, learning through practical tasks during the laboratory works.
3.	Ribosomes, their structure and functions. Endoplasmic reticulum. Golgi apparatus. Lysosomes. Peroxisomes. Plant vacuole and other vacuoles.	3						3	2	Analyses of needed lecture material. Studying of literature and other sources of information, learning through practical tasks during the laboratory works.
4.	Mitochondria. Plastid types. Chloroplasts and their functions.	3						3	2	Analyses of needed lecture material. Studying of literature and other sources of information, learning through practical tasks during the laboratory works.
5.	Cytosol. Cytoskeleton. Actin filaments, microtubules and intermediate filaments. Centrioles, basal bodies, mitotic spindle.	3						3	2	Analyses of needed lecture material. Studying of

Motor proteins. Pseudopodia, flagella and cilia.						literature and other sources of information, learning through practical tasks during the laboratory works.
 Cell nucleus. Nucleoplasma and chromatin. Nuclear envelope. Nuclear lamina. 	3			3	2	Analyses of needed lecture material. Studying of literature and other sources of information, learning through practical tasks during the laboratory works.
 Cell division and cell cycle. DNA replication. Prokaryotic cell division. Mitosis and their phases. Cytokinesis in animal and plant cells. Meiosis. Crossing-over. Comparison of meiosis and mitosis. 	3			3	2	Analyses of needed lecture material. Studying of literature and other sources of information, learning through practical tasks during the laboratory works.
8. Gametes and their formation. Gametogenesis. Plant gametes ant spores. Sporogenesis and gametogenesis. Fertilization. Cell differentiation.	3			3	2	Analyses of needed lecture material. Studying of literature and other sources of information, learning through practical tasks during the laboratory works.
9. Cell death from injury and apoptosis.	2			2	2	Analyses of needed lecture material. Studying of literature and other sources of information, learning through practical tasks during the laboratory works.
10. Cell origin and evolution. Endosymbiosis: the origin of mitochondria and chloroplasts. The main methods of cell investigation.	3			3	2	Analyses of needed lecture material. Studying of literature and other sources of information, learning through practical tasks during the laboratory works.
11. The main cytological and histological methods.	3			3	2	Analyses of needed lecture material. Studying of

							literature and other
							information
							loarning through
							rearing unough
							during the
							laboratory works
12 The main methods of microscopy Simple and				Δ	4		laboratory works.
complex microscopes. Structure of the light				•	•		
microscope principles of light microscopy							
Principles of preparation of microscopy slides							
13. Morphology if the cells. Plant cells.				4	4		
Prosenchyma and parenchyma cells. Animal				•	-		
cells and their diversity. Fungi cells.							
14. Diversity of microorganisms. Morphology of				4	4		
the bacterial cell. Analysis of the permanent							
preparations. Spores of bacteria.							
15. Bacterial cell wall. Gram staining. Yeast cells.				4	4		
Cellular and hyphae form of the cell.							
Peculiarity of yeast division.							
16. Measurement of the size of microscopy				4	4		
objects. Determination of the cell number in							
cell suspensions. Determination of the size of							
cellular organelles by using ocular							
micrometre.							
17. Mitosis. Preparation of the microscopy slide.				4	4		
Analysis of the mitosis stages in peace/onion							
root cells. Calculation of the mitotic index.							
18. Cell differentiation. Analysis of the				4	4		
mammalian blood slides. Analysis of red and							
white blood cells. Gametes. Morphology of							
the mammalian spermatozoids. Mammalian							
oocytes.							
19. Fluorescent microscopy. Principles of the				4	4		
fluorescent microscopy. Common							
fluorochromes. Preparation of slides for							
fluorescent microscopy and their analysis.							
20. Preparation for two middle exams.						11	Prepare for the
							exams
21. Preparation for laboratory exercises.						24	Prepare for the
22 Propagation for final even						10	Droporo for the fine1
22. Freparation for final exam.						14	exam
Total	32		\vdash	32	64	69	
Ittai	54	1			5 T		

Assessment strategy	Weight,%	Assessment period	Assessment criteria
First middterm exam	30	After first 50	Task of the middle exam consists of problem-oriented
(written test)		% of lectures	selective or open type questions; correct answers are
			assessed in different number of points. It is possible to
			collect approximately 70-90 points if answers are correct.
			Assessment criteria:
			5 : collected not less than 85 % of possible points.
			4 : collected not less than 75 % of possible points.
			3 : collected not less than 65 % of possible points.
			2 : collected not less than 55 % of possible points.
			1: collected not less than 45 % of possible points.
			0 : collected less than 45 % of possible points.
Second middterm exam	30	After first 50	Task of the middle exam consists of problem-oriented
(written test)		% of lectures	selective or open type questions; correct answers are

			 assessed in different number of points. It is possible to collect approximately 70-90 points if answers are correct. Assessment criteria: 5: collected not less than 85 % of possible points. 4: collected not less than 75 % of possible points. 3: collected not less than 65 % of possible points. 2: collected not less than 55 % of possible points. 1: collected not less than 45 % of possible points. 0: collected less than 45 % of possible points.
Laboratory works	10	During laboratory works after each work was done	 Laboratory works are required. The final exam are not permitted if the laboratory works are not done or assessed. Assessment criteria: 4: laboratory works are implemented and reported excellent or very well. 3: laboratory works are implemented and reported well. 2: laboratory works are implemented and reported moderately. 1: laboratory works are implemented and reported according minimal requirements. 0: laboratory works are not implemented and/or not reported.
Final exam (written test)	30	After the course, during the session.	 Task of the middle exam consists of problem-oriented elective or open type questions; correct answers are assessed in different number of points. It is possible to collect approximately 70-90 points if answers are correct. Assessment criteria: 5: collected not less than 85 % of possible points. 4: collected not less than 75 % of possible points. 3: collected not less than 65 % of possible points. 2: collected not less than 55 % of possible points. 1: collected not less than 45 % of possible points. 0: collected less than 45 % of possible points. The final grade is based on an overall assessment of the two middle exams, the assessment for laboratory works and assessment of the written final exam.

Author	Year of publica- tion	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link			
Compulsory reading							
V. Mildažienė, S.	2004	Cell biology (in		Kaunas			
Jarmalaitė, R.		Lithuanian)					
Daugelavičius.							
Cooper G. M.,	2013	The Cell: A Molecular		Sinauer Associates, Inc.			
Hausman R. E.		Approach (6th ed.),.					
Optional reading							
Alberts B., Johnson A.,	2010	Essential cell biology: an		Garland Publishing			
Lewis J., Raff M., Bray D.,		introduction to the					
Hopkin K., Roberts K.,		molecular biology of the					
Walter P.		cell (3nd ed.).					
Lodish H. et al.	2008	Molecular Cell Biology, (6th ed.)		Freeman, N.Y.			