COURSE UNIT DESCRIPTION - MOLECULAR CELL BIOLOGY

Course unit title	Code
MOLECULAR CELL BIOLOGY	

Lecturer(s)	Department(s)
Coordinator: Prof. Vida KIRVELIENĖ	Faculty of Natural Sciences, Department of Biochemistry
Others:	and Molecular biology, Čiurlionio 21 LT 03101.
Lectures and seminars:	
prof.dr.Vilmantė Borutaitė,	
prof. dr. Jurgis Kadziauskas,	
prof. dr. Artūras Meškauskas	
Laboratory work: dr. Daiva Dabkevičienė, dr. Marija	
Ger, dr. Violeta Jonušienė, dr. Aušra Sasnauskienė,	
prof. dr. Kęstutis Sužiedėlis	

Mode of delivery	Period of delivered	Language(s) of instruction
Face to face	1 st semester, spring	Lithuanian

Mode of delivery	Period of delivered	Language(s) of instruction
Face to face	1 st semester, autumn	Lithuanian (English)

Prerequisites and corequisities					
Prerequisites:	Corequisities (if any):				
Biochemistry, genetics, molecular biology					

Number of credits allocated to the course unit	Student's total workload	Contact h	iours	Self-study and research hours
9	240	Lectures	54	100
		Seminars	20	
		Laboratory work	66	

Purpose of the course unit: programme competences to be developed							
 Deep understanding of structure function and states of prokaryotic and eukaryotic cells; Introductory ability to apply modern cell biology techniques; Ability for artifical end extension encount data. 							
Learning outcomes of the course unit	Teaching and learning methods	Assessment methods					
After successful completion of this course a student should	be able to:						
 Describe the detailed arrangement of cell membranes as well as structure and functions of membrane proteins; Explain the biomolecular transport through cell plasma- and internal biomembranes. 	Lectures, seminars, self-study	Midterm exam					
 Desribe the detailed structure of ribosomes and dynamic changes consistent with the phase of protein biosynthesis; Explain the dynamic interactions between rRNA and proteins in ribosomes; Explain methods and techniques used for research of ribosomes. 	Lectures, self-study	Midterm exam					
 Analyse the contradictory data on the structure of mitochondria; Give a comprehensive explanation of the functioning and biogenesis of mitochondria. 	Lectures, seminars, self-study	Midterm exam					
 Compare lysosomes to other membranous cell 	Lectures, seminars, self-study	Exam					

 organelles with emphasis on biogenesis, maturation, and internal medium; Describe the role of lysosomes in cell death Compare the molecular networks of autophagy, apoptosis, cornification, pyroptosis and other modes of cell death; Foresee the mode of cell response to different types of stress. 		
 Cultivate mammalian cells and perform viability tests; Carry out experiments on frog eggs; Perform the microscopy imaging of cells, cell nucleus, mitochondria, lysosomes, Golgi apparatus; Prepare samples for mass-spectroscopy experiments and deal with proteomic data; Perform immunofluorescence and PCR experiments and calculations based on the data obtained; Make a choice of appropriate technique for solving the experimental tasks of molecular cell biology; Prepare and present laboratory work report in the form of a research article. 	Lectures, laboratory works, self-study	Pass / Fail

Content: breakdown of the topics	Contact hours								Self-study work: time and assignments
	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
I. <u>Theory</u>									
1. Biological membranes	16		8				24	32	Textbook reading, analysis of selected research articles (Journal Club, JC)
Composition and structure of biomembranes	4		2				6	4	
Ions transport through channels and by transporters	4		2				6	10	
Active transport of cell substances	4		2				6	10	
Transport of proteins through biomembranes	4		2				6	8	
2. Ribosomes and protein biosynthesis	16						16	8	Textbook reading
Ribosomes structure and functions	4						4	1	
tRNA and aminoacyl-synthetases	2						2	2	
rRNA and ribosomal proteins	4						4	2	
Phases of protein biosynthesis / translation	6						6	3	
3.Mitochondria	8		4				12	8	Reading and analysis of selected research articles (JC)
Structure of mitochondria and features of their membranes	3						3	3	
Mitochondrial genom and biogenesis of mitochondria	2		2				4	3	
Transformations of mitochondria in aging and dying cells	3		2				5	2	

4.Lysosomes and their role in cell	3		2		5	12	Textbook reading, analysis of a
							selected research article (JC)
5.Mechanisms of cell death	5		6		11	15	Reading and analysis of
							selected research articles (JC)
Random- and programmed-cell death.	2		3		5	5	
Autophagy							
Cornification, necroptosis, pyroptosis,	3		3		6	10	
entosis and other forms of cell death							
II. <u>Laboratory works</u>	6			26	32	12	Reading and analysis of principles of experimental techniques in e-course, preparation of laboratory works reports
1. Global assessment of cell proteins by mass spectrometry	2			6	8	4	
2. Imaging of cells and organelles (Fluorescence microscopy)	4			4	8	3	
3. Cultivation of mammalian cells and assessment of viability				8	8	2	
4. Investigation of dynamics of protein localization by microinjection into single cell				8	8	3	
Assessment of cell response to stress				40	40	13	
5. Evaluation of cell cycle and forms of				8	8	3	
cell death (Flow cytometry)							
6. Gene silencing with synthetic siRNA				8	8	2	
7. Evaluation of gene expression by qPCR				8	8	4	
8. Measurement of cytokine				16	16	4	
concentration by ELISA							
Total	54	20		66	140	100	

Assessment strategy	Weight, %	Assessment period	Assessment criteria
Laboratory work	Pass/ Fail	Every week	Understanding of theoretical background of experiments (short quiz at the beginning of laboratory session. Ability to get reliable results. All laboratory works must be done, reports must be compiled and defended in one-to-one conversation with laboratory teacher.
Journal Club	Pass/ Fail		All research articles of Journal Club must be read, analyzed, and discussed in class. In case of absence at the discussion, the student must pass the written test in the end of the course (short answer questions)
Midterm exam	33	5 th week of the course	Two open answer questions on the 1 st topic in written
Midterm exam	33	9 th week of the course	Multiple choice tasks on the 2 nd topic
Midterm exam	17	13 th week of the course	Two open answer questions on the 3 rd topic in written
Exam	17	Session	Short answer questions

Author	Year of publica- tion	Title	Publishing place and house or web link
Compulsory reading			
D. Dabkevičienė,	2011,	Applied cell and	Virtual learning environment of Vilnius
V.Jonušienė,	kasmet	molecular biology,	university

V.Kirvelienė, A. Sasnauskienė, K. Sužiedėlis	atnaujina ma	e-course	http://vma.esec.vu.lt/
Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter	2008	Molecular Biology of the Cell, 5 ed.	New York: Garland Science
J. Kadziauskas	2008	Biological membranes (in Lithuanian) Teaching book (CD)	Kaunas: Technologija
R. I. Freshney	2010	Culture of animal cells. A manual of basic technique and specialized applications, 6 ed.	Wiley-Blackwell
Optional reading			
V.Kirvelienė and A.Sasnauskienė	2008, kasmet atnaujina ma	Cell Biology, e- course	Virtual learning environment of Vilnius university http://vma.esec.vu.lt/
P.L.Yeagle, ed.	2011	The structure of biological membranes, 3rd ed.	CRS Press
J. Kadziauskas	2008	Fundamental of biochemistry (in Lithuanian)	Vilnius University Press
R. Westermeier, T. Naven, HR. Hoepker	2008	Proteomics in practice: A guide to successful experimental design, 2 ed.,	Wiley-VCH
V. Kirvelienė	2008	Optical microscopy and digital imaging (in Lithuanian)	Kaunas: Technologija
J. Faber and P. D. Nieuwkoop, eds.	1994	Normal Table of <i>Xenopus laevis</i> (Daudin): A Systematical & Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis, 2 ed.	New York: Garland Science
		Cell culture protocols	Life sciences, Company www.invitrogen.com/site/us/en/home/References /gibco-cell-culture-basics/cell-culture- protocols.html
	2009	Techniques for immune function analysis. Application handbook	Becton Dickinson, Company www.bdbiosciences.com/eu/documents/Immune- Function-Application-Handbook-2ndEd.pdf
	2011	Power SYBR [®] Green PCR User guide	Applied Biosystems, Company www3.appliedbiosystems.com/cms/groups/mcb_ support/documents/generaldocuments/cms_0421 79.pdf
		RNAi	Life sciences, Company www.invitrogen.com/site/us/en/home/Products- and-Services/Applications/RNAi-Epigenetics- and-Gene-Regulation/RNAi.html?CID=fl=rnai