COURSE UNIT DESCRIPTION - SYSTEMS BIOLOGY

Course unit (module) title	Code
SYSTEMS BIOLOGY	

Lecturer(s)	Department (s)						
Coordinator: Assoc. prof. Saulius SERVA	Faculty of Natural Sciences, Department of Biochemistry and Molecular Biology, Čiurlionio 216LT 03101						

Cycle	Level of the course unit	Type of the course unit
Full-time studies (2 nd stage)	1 out of 1	Elective

Mode of delivery	Period of delivered	Language(s) of instruction
Face to face	1 st semester, autumn	Lithuanian

Prerequisites and corequisities						
Prerequisites:	Corequisities (if any):					
Genetics, Biochemistry, Molecular Biology						

Number of credits allocated to the course unit	Student's total workload	Contac	t hours	Self-study and research hours
4	107	Lectures	32	59
		Seminars	16	

Purpose of the course unit: programme competences to be developed

Subject specific competences:

- knowledge in system biology, its achievements and perspectives;
- knowledge of the methods of system biology and their application in solving problems at the level of whole cell and organism;

General competences:

- skills for self-development, study skills in order to study molecular biology;
- skills to present in written and verbal forms the knowledge in systems biology;
- skills to participate in the scientific discussion;

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
 Describes the structure and functions of biological macromolecules from organisms of different domains of life at the molecular level; Approaches cell as a united system; Explains methods of molecular and cellular system analysis and their application; Has relevant skills in Systems Biology to solve problems at the levels of whole cell and organism; Identifies challenges and describes novel methods in Systems Biology to address them; Integrates knowledge of the different areas of science. 	Lectures, seminars, self-study.	Midterm exam; Topic-related seminar presentation; Final exam.

			Cont	act h	ours		Self-study work: time an assignments				
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments		

1. Object of Systems Biology	4				4	6	Analysis of the topic-
							napers'
							self-directed learning.
Description of an object	1				1	2	son unocco rearing.
Need and premises	2				2	2	
Horizons of development. Information sources	1				1	2	
2 Methods and achievements of DNA	5	2			7	8	Analysis of the topic-
sequencing	C	-			,	Ū	related scientific
							papers;
							seminar presentation,
							self-directed learning.
Description and source for DNA sequencing	1				1	2	
Pre-industrial sequencing	1				1	2	
Modern methods and future developments	2	_			2	2	
Significance of massive DNA sequencing	1	2			3	2	
3. Epigenetics	4	2			6	8	Analysis of the topic-
							related scientific
							seminar presentation
							self-directed learning.
Description of an object	1				1	2	son anotica rearing.
Epigenetics aspects and components	2				2	3	
Significance and perspectives	1	2			3	3	
4. Transcriptomics	4	2			6	8	Analysis of the topic-
-							related scientific
							papers;
							seminar presentation,
							self-directed learning.
Description of an object	1				1	2	
Methods in transcriptomics	2	2			2	3	
Application and future perspectives	5	2			3	3	Analysis of the tonic
5. Proteomics: object and methods	5	2			/	o	related scientific
							papers:
							seminar presentation.
							self-directed learning.
Object and premises of proteomics	1				1	2	
Principles and methods	2				2	3	
Application, challenges, perspectives	2	2			4	3	
6. Bioinformatics in Systems Biology	5	2			7	10	Analysis of the topic-
							related scientific
							papers;
							seminar presentation,
Object of Bioinformatics Application in Systems	1	2			2	2	sen-unected learning.
Biology	1	2			5	2	
Premises of Bioinformatics	1				1	2	
Research levels and modelling issues	2				2	3	
Bioinformatics resources	1		1		1	3	
7. Functional analysis of a cell. Interacting cell	5	6			11	11	Analysis of the topic-
							related scientific
							papers;
							seminar presentation,
Dains of Call Theory	1				1	2	self-directed learning.
Content and significance of Call Theory	1				1	5	
Inside the cell	$\frac{2}{2}$	6			2 8	4	
more the cen	4	U	1		0	4	

Total 32 16 48							59				
	•										
Assessment strategy	Weight,%	Assessment period	Assessment criteria								
Midterm exam I	40	9 th week of	Test o	of 20 o	questi	ons f	rom t	opics	I -IV		
		the course	<10 a	nswei	red qu	iestio	ns - 2	2-4 (ir	nsuffi	cient)	
			10 an	swere	d que	estion	s - 5 ((suffi	cient)		
			11-12	answ	vered	quest	ions	- 6 (sa	atisfac	ctory)	
			13-14	answ	vered	quest	ions	- 7(hi	ghly s	satisfa	ictory)
			15-16 answered questions - 8 (good)								
			17-18 answered questions - 9 (very good)								
			19-20 answered questions - 10 (excellent)								
			It is obligatory to answer to at least 10 questions, otherwise test is					estions, otherwise test is			
			failed	and h	nas to	be re	peate	ed.			
Topic-related	20	6-12 th week	Evalu	ated a	is equ	ial pa	rts ba	sing	on:		
seminar		of the course	Scien	tific c	onter	nt;					
presentation			Quali	ty of j	presei	ntatio	n;				
			Answ	ering	to qu	estio	ns				
Exam	40	Exam session	Test o	of 20 o	questi	ons f	rom t	opics	I -IV	•	
			<10 a	nswei	red qu	iestio	ns - 2	2-4 (ir	ısuffi	cient)	
			10 an	swere	d que	estion	s - 5	(suffi	cient)		
			11-12	answ	vered	quest	ions ·	- 6 (sa	atisfac	ctory)	
			13-14	answ	vered	quest	ions ·	- 7(hi	ghly s	satisfa	ictory)
			15-16	answ	vered	quest	ions ·	- 8 (g	ood)		
			17-18 answered questions - 9 (very good)								
			19-20 answered questions - 10 (excellent)								
			It is o	bligat	ory to	o ansv	wer to	o at le	ast 10) ques	stions.
Total	100		Sum o	of mic	lterm	exan	n, sen	ninar	prese	ntatio	n and exam, all
			norma	alized	acco	rding	to w	eight.			

Author	Year of publica- tion	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
Lectures in PDF	2013	Systems Biology		Provided directly to the students
Eberhard O. Voit	2013	A First Course in Systems	ISBN 978-0-	Garland Science, Taylor &
		Biology	8153-4467-4	Francic Group, LLC
Topic-related scientific	2008-	Nature Reviews		Nature Publishing Group
reviews.	2013			
Optional reading				
Edda Klipp <i>et al</i> .	2009	Systems Biology	ISBN: 978-3-	Wiley-VCH Verlag GmbH
		-	527-31874-2	& Co. KGaA
Bernhard O. Palsson	2010	Systems Biology. Properties	ISBN: 978-0-	Cambridge University Press
		of Reconstructed Networks	521-85903-5	