COURSE UNIT DESCRIPTION - X-RAY CRYSTALLOGRAPHY OF BIOLOGICAL MACROMOLECULES

Course unit title Code X-RAY CRYSTALLOGRAPHY OF BIOLOGICAL MACROMOLECULES

Lecturer(s)	Department (s)
Coordinator: Assoc. Prof. dr. Saulius GRAŽULIS	Institute of Biotechnology of Vilnius University,
Other(s):	V.A.Graičiūno 8, Vilnius LT-02241

Cycle	Level of the course unit	Type of the course unit
Full-time studies (2 nd stage)	1 out of 1	Elective

Mode of delivery	Period of delivered	Language(s) of instruction
Face to face	2 nd semester, spring	Lithuanian (English)

Prerequisites and corequisities						
Prerequisites:	Corequisities (if any):					
Biochemistry, organic chemistry, physical chemistry,	Work experience in Unix or Linux operating systems and					
physics, calculus, linear algebra	basic familiarity with a tree file system and command					
	line interpreter (Unix shell) are desirable.					

Number of credits allocated to the course unit	Student's total workload	Contact hours	Self-study and research hours
4	107	48	59

Purpose of the course unit: programme competences to be developed

Upon the successful completion of this course, students will acquire:

Subject-specific competences:

- knowledge of macromolecular structure analysis methods, necessary for independent scientific research;
- skills to select and apply macromolecular structure analysis methods for research and to interpret reasonably the results obtained through those methods;
- skills to integrate the knowledge of different sciences;

General competences:

- analytical and synthetic thinking;
- abilities of self-learning;
- ability to present knowledge in the field of structural biology in talks in written form;

• abilities to participate in scientific discussion;

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
Describes the state-of-the-art X-ray crystallography	Lectures, problem-based	Midterm exams; final exam;
capabilities, and other structure analysis methods.	learning, practical classes,	topic-related practical
Skills to choose an appropriate structure analysis method for	self-study.	classes, practical work report.
a given problem.		
Determines, on his/her own, the 3D structure of a	Lectures, problem-based	Midterm exams; final exam;
macromolecule from collected diffraction data (X-ray	learning, practical classes,	topic-related practical
diffraction images, HKLFobs data).	self-study.	classes, practical work report.
Assesses quality of the own constructed macromolecule	Lectures, problem-based	Midterm exams; final exam;
models and of the macromolecule models published in	learning, practical classes,	topic-related practical
databases or in scientific press.	self-study.	classes, practical work report.
Assesses critically the structural information obtained by X-	Analysis of structures	Midterm exams; final exam;
ray crystallography and other methods and extracts	provided in the PDB,	topic-related practical
biologically relevant knowledge from structural data.	lectures, problem-based	classes, practical work report.
	learning, practical classes,	_

self-study.									
		Contact hours				Se	lf-study work: time and assignments		
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Practical work	Work placement	Contact hours	Self-study hours	Assignments
1. Importance of structural information and methods of obtaining it	4				2		6	8	Critical assessment of books, scientific papers and Web material on the topic. Self-directed learning.
1a. Structural information about biological macromolecules: types of structural information and its uses	2				1		3	4	
1b. Experimental methods for macromolecule structure determination (NMR, ESR, EXAFS/XANES, X-ray crystallography)	2				1		3	4	
2. Theory of X-ray crystallography	8				4		12	16	Critical assessment of books, scientific papers and Web material on the topic. Self-directed learning.
2a. Introduction into X-ray diffraction theory	4				2		6	8	
2b. Phase problem and methods of its solution	4				2		6	8	
3. Symmetry of crystals	6				3		9	12	Critical assessment of books, scientific papers and Web material on the topic. Self-directed learning.
3a. Plane and space symmetry groups	2				1		3	4	
3b. Elements of crystallographic symmetry	2				1		3	4	
3c. Use and interpretation of symmetry: International Tables for Crystallography	2				1		3	4	
4. Analysis of macromolecule crystals	6				3		9	12	Critical assessment of books, scientific papers and Web material on the topic. Practical work with crystallographic data

						and models, including ones from the PDB. Self-directed learning.
4a. Methods of crystal preparation	1			1		
4b. Diffraction experiment and data collection	1		1	2	4	
4c. Processing of diffraction data and phase determination	2		1	3	4	
4d. Model building and refinement	2		1	 3	4	
5. Structural models and their interpretation	8		4	12	16	Critical assessment of books, scientific papers and Web material on the topic. Practical work with crystallographic data and models, including ones from the PDB. Self-directed learning.
5a. Data and model quality criteria	2		1	3	4	
5b. Structural databases (PDB, NDB, COD, etc.)	2		1	3	4	
5c. Model overlay and comparison	2		1	3	4	
5d. Biochemical interpretation of structural models	2		1	3	4	
Total	32		16	48	64	

Assessment strategy	Weight,%	Assessment period	Assessment criteria
Classwork	10	Beginning of	A quiz (virtual learning environment) of 4 questions from topics
assessment		each practical	the topics covered in the previous lectures. The scores from all
		seminar	answers in all quizzes are summed up; maximal sum is 100
			points.
Midterm exam	30	Middle of the	Test (virtual learning environment) of 50 questions from topics 1-
		course	3; maximum score from this test is 300 points.
	• •		~
Presentation of the	30	Last week of	Students must upload a report (type-setted according to the
practical work		the course	presentation standards of the Vilnius University) to the Virtual
results			Learning Environment and prepare a $5 - 10$ min. talk on his/her
			work. The evaluation criteria will include: achievement of the
			goals set for the practical work – up to 100 points; general understanding of the topic (as judged from the answers to 3 topic
			related questions) – up to 100 points; written presentation of the
			work – up to 50 points; oral presentation – up to 50 points; total
			sum up to 300 points.
Exam	30	Exam session	Test (virtual learning environment) of 50 questions from all topics
			of the course; maximum score from this test is 300 points.
Total	100		The final mark is obtained by summing up points earned in all
			quizzes and tests (summing up to 1000 points), dividing by 100
			and rounding to the next largest integer (thus a sum, for instance,
			of 901 point would give the final mark 10).

Author	Year of publica- tion	Title	Publishing place and house or web link
Compulsory reading			
S. Gražulis	2012	Virtual learning environment: course "X-ray crystallography of biological macromolecules"	http://saulius-grazulis.lt/moodle/.
wwPDB konsorciumas	2013	PDB, The Protein Data Bank	http://www.pdb.org/
	1971 – 2013	papers describing macromolecule structures as cited in the PDB	http://www.pdb.org/
Jan Drenth	1994	Principles of Protein X-Ray Crystallography (Springer Advanced Texts in Chemistry)	Springer Verlag, New York, ISBN 0-387- 94091-X
Duncan McRee	1999	Practical Protein Crystallography, Second Edition	Academic Press/Elseview, London, ISBN- 13 978-0-12-486052-0
Theo Hahn (Editor)	2002	International Tables for Crystallography, Brief Teaching Edition of Volume A	Kluwer Academic Publishers Dortrecht/Boston/London, ISBN 0-7923- 6591-7
Optional reading			
IUCr	2013	IUCr Educational resources	http://www.iucr.org/education, http://www.iucr.org/education/pamphlets
Jack D. Dunitz	1995	X-Ray analysis and the Structure of Organic Molecules	Verlag Helvetica Chimica Acta, Basel, ISBN 3-906390-14-4
Carmelo Giacovazzo (Editor), et al.	1995	Fundamentals of Crystallography	Oxford university Press, Oxford, New York, ISBN 0-19-855578-4
Theo Hahn (Editor)	2002	International Tables for Crystallography, Volume A	Kluwer Academic Publishers Dortrecht/Boston/London, ISBN 0-7923- 6590-9